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Appendix A

Summary of Draft ISO Prolog

This appendix is a summary of the March 1993 draft ISO standard for the Prolog language, ISO/IEC JTC1

SC22 WG17 N110 (\Prolog: Part 1, General core"). As this is written (June 1993), the proposed standard

is still subject to change, and standard{conforming Prolog implementations have not yet appeared.

1

Section

A.9 summarizes the June 1993 proposal for a module system, ISO/IEC JTC1 SC22 WG17 N111 (\Prolog:

Part 2, Modules"), which is much farther from �nal form than N110.

The information given here is only a sketch; anyone needing de�nitive details is urged to consult the ISO

documents themselves.

The draft ISO standard does not include de�nite clause grammars (DCGs), nor the Edinburgh �le{

handling predicates (see, seen, tell, told, etc.). Implementors are, however, free to keep these for com-

patibility, and nothing that conicts with them has been introduced.

The proposed standard does not presume that you are using the ASCII character set. The numeric codes

for characters can be whatever your computer uses.

A.1 Syntax of Terms

A.1.1 Comments and Whitespace

Whitespace (\layout text") consists of blanks, end{of{line marks, and comments. (Implementations com-

monly treat tabs and formfeeds as equivalent to blanks.)

You can put whitespace before or after any term, operator, bracket, or argument separator, as long

as you do not break up an atom or number and do not separate a functor from the opening parenthesis

that introduces its argument list. Thus f(a,b,c) can be written f( a , b , c ), but there cannot be

whitespace between f and (.

Whitespace is sometimes required, e.g., between two graphic tokens. For example, * * is two occurrences

of the atom *, but ** is one atom.

There are two types of comments. One type begins with /* and ends with */; the other type begins with

% and ends at the end of the line. Comments can be of zero length (e.g., /**/).

It is not possible to nest comments of the same type (for example, /* /* */ is a complete, valid comment).

But a comment of one type can occur in a comment of the other type (/* % thus */).

Style note: Because nesting is not permitted, we recommend using % for ordinary comments and using

/* */ only to comment out sections of code.

A.1.2 Variables

A variable name begins with a capital letter or the underscore mark (_) and consists of letters, digits, and/or

underscores. A single underscore mark denotes an anonymous variable.

1

A rough draft of this appendix was circulated by Internet; I want to thank Jan Burse, Jo Calder, Klaus Daessler, Markus

Fromherz, Fergus Henderson, Andreas Kagedal, and especially Roger Scowen for pointing out errors.
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2 APPENDIX A. SUMMARY OF DRAFT ISO PROLOG

A.1.3 Atoms (Constants)

There are four types of atoms:

� A series of letters, digits, and/or underscores, beginning with a lower{case letter;

� A series of 1 or more characters from the set

# $ & * + - . / : < = > ? @ ^ ~ \

provided it does not begin with `/*' (such atoms are called graphic tokens);

� The special atoms [] and {} (see section A.1.6 below);

� A series of arbitrary characters in single quotes.

Within single quotes, a single quote is written double (e.g., 'don''t panic'). A backslash at the very

end of the line denotes continuation to the next line, so that

'this is \

an atom'

is equivalent to 'this is an atom' (that is, the line break is ignored). Note however that when used this

way, the backslash must be at the physical end of the line, not followed by blanks or comments. (In practice,

some implementations are going to have to permit blanks because it is hard or impossible to get rid of

them.)

2

Another use of the backslash within a quoted atom is to denote special characters, as follows:

\a alert character (usually the beep code, ASCII 7)

\b backspace character

\f formfeed character

\n newline character or code (implementation dependent)

\r return without newline

\t (horizontal) tab character

\v vertical tab character (if any)

\x23\ character whose code is hexadecimal 23 (likewise for any number of hex digits)

\23\ character whose code is octal 23 (likewise for any number of octal digits)

\\ backslash

\' single quote

\" double quote

\` backquote

The last two of these will never be needed in a quoted atom. They are used in other types of strings

that take these same escape sequences, but are delimited by double quotes or backquotes.

A.1.4 Numbers

Integers are written in any of the following ways:

� As a series of decimal digits, e.g., 012345;

� As a series of octal digits preceded by 0o, e.g., 0o567;

� As a series of hexadecimal digits preceded by 0x, e.g., 0x89ABC;

2

A line break written as such cannot be part of the atom; for example,

'this and

that'

is not a valid atom. Instead, use the escape sequence \n.
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� As a series of binary digits preceded by 0b, e.g., 0b10110101;

� As a character preceded by 0', e.g., 0'a, which denotes the numeric code for the character a. (The

character is written exactly as if it were in single quotes; that is, if it is a single quote it must be

written twice, and an escape sequence such as \n is treated as a single character.)

Floating{point numbers are written only in decimal. They consist of at least one digit, then (optionally)

a decimal point and more digits, then (optionally) E, an optional plus or minus, and still more digits. For

example:

234 2.34 2.34E5 2.34E+5 2.34E-10

Note that .234 and 2. are not valid numbers.

A minus sign can be written before any number to make it negative (e.g., -3.4). Notice that this minus

sign is part of the number itself; hence -3.4 is a number, not an expression.

A.1.5 Character Strings

The ISO standard provides four ways of representing character{string data:

� As atoms ('like this'). Unfortunately, atoms take up space in the symbol table, and some imple-

mentations limit the size of each atom, or the total number of atoms, or both. The standard itself does

not recognize any such limits.

� As lists of one{character atoms ([l,i,k,e,' ',t,h,i,s]).

� As Edinburgh{style strings "like this", where a string is a list of numeric codes (e.g., "abc" =

[97,98,99]).

Actually, "abc" = [97,98,99] only on computers that use the ASCII character codes. But the

equivalence "abc" = [0'a,0'b,0'c] holds on all computers, because 0'a represents the numeric code

for a.

� As strings delimited by backquotes (`like this`) if the implementor wants to implement them. No

operations are de�ned on this type of string, and they are not required to be implemented at all.

As you might guess, these four options reect considerable disagreement among the standardizers. For a

long time, Edinburgh strings weren't going to be included at all, but they were �nally added to the March

1993 draft.

The quotes that delimit a string or atom, whichever kind they may be, are written double if they occur

within the string ('it''s', "it""s", `it``s`). Double quoted strings and backquoted strings recognize

the same backslash escape sequences as are used in quoted atoms (Section A.1.3).

Table A.1 shows all the built{in predicates that relate to character string operations. Most perform

operations on atoms or lists of characters rather than lists of numeric codes.

A.1.6 Structures

The ordinary way to write a structure is to write the functor, an opening parenthesis, a series of terms

separated by commas, and a closing parenthesis: f(a,b,c). We call this functor notation, and it can

be used even with functors that are normally written as operators (e.g., 2+2 = +(2,2)).

Lists are de�ned as rightward{nested structures using the operator `.' (which is not an in�x operator).

For example,

[a] = .(a, [])

[a, b] = .(a, .(b, []))

[a, b | c] = .(a, .(b, c))
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Table A.1: Built{in predicates for character{string operations.

atom length(Atom,Integer)

Length (in characters) of Atom is Integer.

atom concat(Atom1,Atom2,Atom3)

Concatenating Atom1 and Atom2 gives Atom3. (Either Atom3, or both Atom1 and Atom2, must be

instantiated.)

sub atom(Atom,N,L,Sub)

The substring of Atom beginning at the Nth character and L characters long is Sub. (Atom must be

instantiated.) A query such as sub_atom(abcabc,N,L,ab) produces multiple solutions upon

backtracking.

char code(Char,Code)

Relates a character (i.e., a one{character atom) to its numeric code (ASCII, or whatever the

computer uses). (Either Char or Code, or both, must be instantiated.)

atom chars(Atom,Chars)

Interconverts atoms with lists of the characters that represent them, e.g.,

atom_chars(abc,[a,b,c]). (Either Atom or Chars, or both, must be instantiated.)

atom codes(Atom,String)

Like atom_chars, but uses a list of numeric codes, i.e., a string.

number chars(Num,Chars)

Interconverts numbers with lists of the characters that represent them, e.g.,

number_chars(23.4,['2','3','.','4']). (Either Num or Chars, or both, must be instantiated.)

number codes(Num,String)

Like number_chars, but uses a list of numeric codes, i.e., a string.

These predicates raise error conditions if an argument is the wrong type. Note that name/2 is not included in the standard.
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Table A.2: Prede�ned operators of Draft ISO Prolog.

Priority Speci�er Operators

1200 xfx :- -->

1200 fx :- ?-

1100 xfy ;

1050 xfy ->

1000 xfy ,

700 xfx = \= == \== @< @=< @> @>= is =:= =\= < =< > >= =..

500 yfx + - /\ \/

400 yfx * / // rem mod << >>

200 xfx **

200 xfy ^

200 fy \ -

100 xfx @

50 xfx :

Many of the standardizers want to add \+, presumably with priority 900 and speci�er fy.

There can be only one | in a list, and no commas after it.

Curly brackets have a special syntax that is used in implementing de�nite clause grammars, but can also

be used for other purposes. Any term enclosed in { } is treated as the argument of the special functor `{}':

{one} = {}(one)

Recall that commas can act as in�x operators; thus,

{one,two,three} = {}(','(one,','(two,three)))

and likewise for any number of terms.

The standard does not include de�nite clause grammars, but does include this syntactic \hook" for

implementing them. You are, of course, free to use curly brackets for any other purpose.

A.1.7 Operators

The prede�ned operators of Draft ISO Prolog are shown in Table A.2. The meanings of the operators will be

explained elsewhere in this appendix as they come up; @ and : are to be used in the module system (Part 2

of the draft, not yet released). Some operators, such as ?- and -->, are not given a meaning in the standard,

but are preserved for compatibility reasons.

The specifier of an operator, such as xfy, gives both its class (in�x, pre�x, or post�x) and its as-

sociativity. Associativity determines what happens if there are two in�x operators of equal priority on

either side of an argument. For example, in 2+3+4, 3 could be an argument of either the �rst or the second

+, and the associativity yfx speci�es that the grouping on the left should be formed �rst, treating 2+3+4 as

equivalent to (2+3)+4. The Prolog system parses an expression by attaching operators to their arguments,

starting with the operators of the lowest priority, thus:

2 + 3 * 4 =:= X (original expression)

2 + *(3,4) =:= X (after attaching *, priority 400)

+(2,*(3,4)) =:= X (after attaching +, priority 500)

=:=(+(2,*(3,4)),X) (after attaching =:=, priority 700)

Terms that are not operators are considered to have priority 0.

The same atom can be an operator in more than one class (such as the in�x and pre�x minus signs). To

avoid the need for unlimited lookahead when parsing, the same atom cannot be both an in�x operator and

a post�x operator.
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A.1.8 Commas

The comma has three functions: it separates arguments of functors, it separates elements of lists, and it

is an in�x operator of priority 1000. Thus (a,b) (without a functor in front) is a structure, equivalent to

','(a,b).

A.1.9 Parentheses

Parentheses are allowed around any term. The e�ect of parentheses is to override any grouping that may

otherwise be imposed by operator priorities. Operators enclosed in parentheses do not function as operators;

thus 2(+)2 is a syntax error.

A.2 Program Structure

A.2.1 Programs

The draft standard does not de�ne \programs" per se, because Prolog is not a (wholly) procedural language.

Rather, the standard de�nes Prolog text, which consists of a series of clauses and/or directives, each

followed by `.' and then whitespace.

The standard does not de�ne consult or reconsult; instead, the mechanism for loading and querying

a Prolog text is left up to the implementor.

A.2.2 Directives

The draft standard de�nes the following set of directives, which is somewhat tentative:

:- dynamic(Pred/Arity).

The speci�ed predicate is to be dynamic (modi�able at run time). (See also section A.9.)

:- multifile(Pred/Arity).

The speci�ed predicate can contain clauses loaded frommore than one �le. (The multifile declaration

must appear in each of the �les, and if the predicate is declared dynamic in any of the �les, it must be

declared dynamic in all of them.)

:- discontiguous(Pred/Arity).

The clauses of the speci�ed predicate are not necessarily together in the �le. (If this declaration is not

given, the clauses of each predicate are required to be contiguous.)

:- op(Priority,Associativity,Atom).

The atom is to be treated syntactically as an operator with the speci�ed priority and associativity

(e.g., xfy).

Caution: An op directive in the program �le a�ects the syntax while the program is being loaded;

the standard does not require that its e�ect persist after the loading is complete. Traditionally, an op

declaration permanently changes the syntax used by the Prolog system (until the end of the session),

thus a�ecting all further reads, writes, and consults; the standard permits but does not require this

behavior. See also section A.9.

However, op can also be called as a built{in predicate while the program is running, thereby

determining how read and write will behave at run time.

An operator can be deprived of its operator status by declaring it to have priority 0 (in which case

its class and associativity have no e�ect, but must still be declared as valid values).

:- char conversion(Char1,Char2).

This speci�es that if character conversion is enabled (see \Flags," Section A.5), all occurrences of Char1

that are not in quotes should be read as Char2. Note that, to avoid painting yourself into a corner,

you should normally put the arguments of char_conversion in quotes so that they won't be subject

to conversion.
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The situation with char_conversion is analogous to op | the standard does not require its e�ect

to persist after the program �nishes loading. However, you can also call char_conversion as a built{in

predicate at execution time, to determine how characters will be converted at run time.

:- initialization(Goal).

This speci�es that as soon as the program is loaded, the goal Goal is to be executed. There can be more

than one initialization directive, in which case all of the goals in all of them are to be executed, in

an order that is up to the implementor.

:- include(File).

Speci�es that another �le is to be read at this point exactly as if its contents were in the main �le.

(Apparently, a predicate split across two �les using include does not require a multifile declaration,

since the loading is all done at once.)

:- ensure loaded(File).

Speci�es that in addition to the main �le, the speci�ed �le is to be loaded. If there are multiple

ensure_loaded directives referring to the same �le, it is only loaded once.

Note that directives are not queries | the standard does not say you can embed arbitrary queries in your

program, nor that you can execute directives as queries at run time (except for op and char_conversion,

which are, explicitly, also built{in predicates). Traditionally, directives have been treated as a kind of query,

but the standard, with advancing compiler technology in mind, does not require them to be.

A.3 Control Structures

A.3.1 Conjunction, disjunction, fail, and true

As in virtually all Prologs, the comma (,) means \and," the semicolon (;) means \or," fail always fails,

and true always succeeds with no other action.

A.3.2 Cuts

The cut (!) works in the traditional way. When executed, it succeeds and throws away all backtrack points

between itself and its cutparent. Normally, the cutparent is the query that caused execution to enter the

current clause. However, if the cut is in an environment that is opaque to cuts, the cutparent is the

beginning of that environment. Examples of environments that are opaque to cuts are:

� The argument of the negation predicate (fail_if, traditionally written not or \+).

� The argument of call, which can of course be a compound goal, such as call((this,!,that)).

� The left{hand argument of `->' (see below).

� The goals that are arguments of once, catch, findall, bagof, and setof (and, in general, any other

goals that are arguments of predicates).

A.3.3 If{then{else

The \if{then{else" construct (Goal1 -> Goal2 ; Goal3) tries to execute Goal1, and, if successful, proceeds

to Goal2; otherwise, it proceeds to Goal3. The semicolon and Goal3 can be omitted. Note that:

� Only the �rst solution to Goal1 is found; any backtrack points generated while executing Goal1 are

thrown away.

� If Goal1 succeeds, execution proceeds to Goal2, and then:

{ If Goal2 fails, the whole construct fails.

{ If Goal2 succeeds, the whole construct succeeds.
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{ If Goal2 has multiple solutions, the whole construct has multiple solutions.

� If Goal1 fails, execution proceeds to Goal3, and then:

{ If Goal3 fails, the whole construct fails.

{ If Goal3 succeeds, the whole construct succeeds.

{ If Goal3 has multiple solutions, the whole construct has multiple solutions.

� If Goal1 fails and there is no Goal3, the whole construct fails.

� Either Goal2 or Goal3 will be executed, but not both (not even upon backtracking).

� If Goal1 contains a cut, that cut only has scope over Goal1, not the whole clause. That is, Goal1 is

opaque to cuts.

� The whole if{then{else structure has multiple solutions if Goal1 succeeds and Goal2 has multiple

solutions, or if Goal1 fails and Goal3 has multiple solutions. That is, backtrack points in Goal2 and

Goal3 behave normally.

� Cuts in Goal2 and Goal3 have scope over the entire clause (i.e., behave normally).

Note that the semicolon in Goal1 -> Goal2 ; Goal3 is not the ordinary disjunction operator; if it were,

you would be able to get solutions to Goal1 -> Goal2 and then, upon backtracking, also get solutions to

Goal3. But this never happens. Rather, -> and ; have to be interpreted as a unit.

Style note: We do not recommend mixing cuts with if{then or if{then{else structures.

A.3.4 Variable goals, call

Variables can be used as goals. A term G which is a variable occurring in place of a goal is converted to the

goal call(G). Note that call is opaque to cuts.

A.3.5 repeat

The predicate repeat works in the traditional way, i.e., whenever backtracking reaches it, execution proceeds

forward again through the same clauses as if another alternative had been found.

A.3.6 once

The query once(Goal) �nds exactly one solution to Goal. It is equivalent to call((Goal,!)) and is opaque

to cuts.

A.3.7 Negation (fail if)

The negation predicate is called fail_if and is opaque to cuts. That is, fail_if(Goal) is like call(Goal)

except that its success or failure is the opposite. Note that fail_if is not an operator, and that extra

parentheses are required around compound goals (e.g., fail_if((this,that))).

As this is written (mid{1993), there is strong sentiment in favor of reintroducing \+ into the standard as

a pre�x operator with the same meaning as fail_if.

A.4 Error Handling

A.4.1 catch and throw

The control structures catch and throw are provided for handling errors and other explicitly programmed

exceptions. They make it possible to jump out of multiple levels of procedure calls in a single step.
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The query catch(Goal1,Arg,Goal2) is like call(Goal1) except that if, at any stage during the execution

of Goal1, there is a call to throw(Arg), then execution will immediately jump back to the catch and proceed

to Goal2. Here Arg can be a variable or only partly instantiated; the only requirement is that the Arg in the

catch must match the one in the throw. Thus, Arg can include information to tell catch what happened.

In catch, Goal1 and Goal2 are opaque to cuts.

A.4.2 Errors detected by the system

When the system detects a runtime error, it executes a throw(error(Type,Info)), where Type is the type

of error and Info contains other information that is up to the implementor.

If the user's program has executed a matching catch, execution jumps back to there; otherwise, the

system prints out an error message and stops. Thus, you can use catch to catch system{detected errors,

not just your own calls to throw.

The possible values of Type are:

instantiation error

An argument was uninstantiated in a place where uninstantiated arguments are not permitted.

type error(Type,Term)

An argument should have been of type Type (atom, body (of clause), callable (goal), character,

compound (= structure), constant, integer, list, number, or variable), but Term is what was

actually found.

domain error(Domain,Term)

Like type_error, except that a domain is a set of possible values, rather than a basic data type.

Examples are character_list and stream_or_alias. Again, Term is the argument that caused the

error.

existence error(ObjType,Term)

Something does not exist that is necessary for what the program is trying to do. Examples are

operator, procedure, and past end of stream (when you read past the end of a �le). Here, again,

Term is the argument that caused the error.

permission error(Operation,ObjType,Term)

The program attempted something that is not permissible (such as repositioning a non{repositionable

�le). Term and ObjType are as in the previous example, and Operation is access clause, create,

input, modify, or the like.

representation error(ErrorType)

An implementation{de�ned limit has been violated, for example by trying to handle 'ab' as a single

character. Values of ErrorType are character, character code, exceeded max arity, and flag.

calculation error(ErrorType)

An arithmetic error has occurred. Types are overflow, underflow, zero divide, and undefined.

resource error(Resource)

The system has run out of some resource (such as memory or disk space).

syntax error

The system has attempted to read a term that violates Prolog syntax. This can occur during program

loading, or at run time (executing read or read_term).

system error

This is the catch{all category for other implementation{dependent errors.

For further details see the latest ISO documents.
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Table A.3: Flags de�ned in the Draft ISO Prolog Standard.

bounded (true or false)

True if integer arithmetic gives erroneous results outside a particular range (as when you add

32767 + 1 on a 16{bit computer and get �32768). False if the range of available integers is unlimited

(as with Lisp \bignums").

max integer (an integer)

The greatest integer on which arithmetic works correctly. De�ned only if bounded is true.

min integer (an integer)

The least integer on which arithmetic works correctly. De�ned only if bounded is true.

integer rounding function (down or toward zero)

The direction in which negative numbers are rounded by // and rem.

char conversion (on or off)

Controls whether character conversion is enabled. Can be set by the program.

debug (on or off)

Controls whether the debugger is in use (if so, various predicates may behave nonstandardly). Can

be set by the program.

max arity (an integer or unbounded)

The maximum permissible arity for functors.

undefined predicate (error, fail, or warning)

Controls what happens if an unde�ned predicate is called. Can be set by the program.

A.5 Flags

A flag is a parameter of the implementation that the program may need to know about. The built{in

predicates current_prolog_flag(Flag,Value) and set_prolog_flag(Flag,Value) allow the program to

obtain and, where applicable, change the values of ags.

Table A.3 lists the ags de�ned in the draft standard. Any speci�c implementation is likely to have many

more.

A.6 Arithmetic

A.6.1 Where expressions are evaluated

Arithmetic expressions are evaluated in the following contexts:

� The right{hand argument of is (e.g., X is 2+3).

� Both arguments of the comparison predicates =:= =\= < > =< >=.

A.6.2 Functors allowed in expressions

The evaluable functors that are permitted in expressions are listed in Table A.4.

The arithmetic system of the draft ISO standard is based on other ISO standards for computer arithmetic;

see the draft standard itself for full details. The draft Prolog standard requires all arithmetical operations

to give computationally reasonable results or raise error conditions.
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Table A.4: Functors that can be used in arithmetic expressions.

N + N Addition

N - N Subtraction

N * N Multiplication

N / N Floating{point division

I // I Integer division

I rem I Remainder

I mod I Modulo

N ** N Exponentiation (result is oating{point)

-N Sign reversal

abs(N) Absolute value

atan(N) Arctangent (in radians)

ceiling(N) Smallest integer not smaller than N

cos(N) Cosine (argument in radians)

exp(N) Natural antilogarithm, e

N

sqrt(N) Square root

sign(N) Sign (-1, 0, or 1 for negative, zero, or positive N)

float(N) Convert to oating{point

floor(X) Largest integer not greater than X

log(N) Natural logarithm, log

e

N

sin(N) Sine (argument in radians)

truncate(X) Integer equal to the integer part of X

round(X) Integer nearest to X

I >> J Bit{shift I rightward J bits

I << J Bit{shift I leftward J bits

I /\ J Bitwise and function

I \/ J Bitwise or function

\ I Bitwise complement (reverse all bits of I)

Here I and J denote integers, X denotes oating{point numbers, and N denotes numbers of either type.
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A.7 Input and Output

A.7.1 Overview

Except for read, write, writeq, and nl, the traditional Edinburgh input{output predicates are not included

in the standard. Instead, a new, very versatile i{o system is proposed. Here is a simple example of �le output:

test :- open('/usr/mcovingt/myfile.txt',write,MyStream,[type(text)]),

write_term(MyStream,'Hello, world',[quoted(true)]),

close(MyStream,[force(false)]).

Notice that each input{output operation can name a stream (an open �le) and can give an option list.

To take the defaults, the option lists can be empty, and in some cases even omitted:

test :- open('/usr/mcovingt/myfile.txt',write,MyStream,[]),

write_term(MyStream,'Hello, world',[]),

close(MyStream).

A.7.2 Opening a stream

A stream is an open �le (or other �le{like object) that can be read or written sequentially. You can refer

to a stream either by its handle (an implementation{dependent term that gets instantiated when you open

the stream) or its alias (a name that you give to the stream).

By default, the streams user_input and user_output are already open, referring to the keyboard and

the screen respectively, and are the current input and output streams. But current input and output can be

redirected.

To open a stream, use the predicate open(Filename,Mode,Stream,Options), where:

� Filename is an implementation{dependent �le designator (normally a Prolog atom);

� Mode is read, write, or append;

� Stream is a variable that will be instantiated to an implementation{dependent \handle";

� Options is an option list, possibly empty.

The contents of the option list can include:

� type(text) (the default) or type(binary). A text �le consists of printable characters arranged into

lines; a binary �le contains any data whatsoever, and is read byte by byte.

� reposition(true) or reposition(false) (the default). A repositionable stream (e.g., a disk �le) is

one in which it is possible to skip forward or backward to speci�c positions.

� alias(Atom) to give the stream a name. For example, if you specify alias(accounts_receivable),

you can write accounts_receivable as the Stream argument of subsequent operations on this stream.

� A speci�cation of what to do upon repeated attempts to read past end of �le:

{ eof_action(error) to raise an error condition;

{ eof_action(eof_code) to make each attempt return the same code that the �rst one did (e.g.,

-1 or end_of_file); or

{ eof_action(reset), to examine the �le again and see if it is now possible to read past what used

to be the end (e.g., because of data written by another concurrent process).

Rather surprisingly, the draft standard speci�es no default for this option.

Implementors are free to add other options.
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A.7.3 Closing a stream

The predicate close(Stream,Options) closes a stream. It can be written close(Stream) if the option list

is empty.

The option list can include force(false) (the default) or force(true); the latter of these says that if

there is an error upon closing the stream (e.g., a diskette not in the drive), the system shall assume that the

stream was successfully closed anyway, without raising an error condition.

A.7.4 Stream properties

The predicate stream_property(Stream,Property) lets you determine the properties of any currently open

stream, like this:

?- stream_property(user_input,mode(What)).

What = read

Properties include the following:

� file_name(...), the �le name;

� mode(M), where M is input or output;

� alias(A), where A is the stream's alias, if any;

� position(P), where P is an implementation{dependent term giving the current position of the stream;

� end_of_stream(E), where E is at, past, or no, to indicate whether reading has just reached end of

�le, has gone past it, or has not reached it.

� eof_action(A), where A is as in the options for open.

� reposition(B), where B is true or false to indicate repositionability.

� type(T), where T is text or binary.

Implementations are free to de�ne other properties.

A.7.5 Reading and writing characters

Table A.5 summarizes the input{output predicates that deal with single characters. They are usable on both

text and binary �les; on a binary �le, they treat bytes as characters.

The standard does not specify whether keyboard input is bu�ered or unbu�ered; that is considered to be

an implementation{dependent matter.

A.7.6 Reading terms

Table A.6 shows the predicates for reading terms. Each of them reads a term from a text stream; the

term must be followed by a period and then by whitespace, and must conform to Prolog syntax.

A new feature in the draft standard gives you some access to the variables in the input. Traditionally, if

you read a term with variables in it, such as f(X,Y,X), then you get a term in which the relative positions

of the variables are preserved, but the names are not, such as f(_0001,_0002,_0001).

Now, however, by specifying the option variable_names(List), you can also get a list that pairs up the

variables with their names, like this:

?- read_term(Term,[variable_names(Vars)]).

f(X,Y,X). (typed by user)

Term = f(_0001,_0002,_0001)

Vars = [_0001='X',_0002='Y']
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Table A.5: Single{character input and output predicates.

get char(Stream,Char)

Reads a character (as a one{character atom). Returns end of file at end of �le.

get char(Char)

Same, using the current input stream.

get code(Stream,Code)

Reads a byte as a numeric code. Returns -1 at end of �le.

get code(Code)

Same, using the current input stream.

put char(Stream,Char)

Writes Char, which must be a one{character atom. (Equivalent to write(Char), but presumably

faster.)

put char(Char)

Same, using the current output stream.

put code(Stream,Code)

Writes a byte given its numeric value.

put code(Code)

Same, using the current output stream.

Table A.6: Predicates for reading terms.

read term(Stream,Term,Options)

Reads a term from Stream using options in list.

read term(Term,Options)

Same, using current input stream.

read(Stream,Term)

Like read_term(Stream,Term,[]).

read(Term)

Like read_term(Term,[]).

All of these return the atom end of file at end of �le.
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Table A.7: Predicates for writing terms.

write term(Stream,Term,Options)

Outputs a term onto a text stream using the option list.

write term(Term,Options)

Same, using the current output stream.

write(Stream,Term)

Like write_term(Stream,Term,[numbervars(true)].

write(Term)

Same, using the current output stream.

write canonical(Stream,Term)

Like write_term with the options [quoted(true), ignore ops(true)].

write canonical(Term)

Same, using current output stream.

writeq(Stream,Term)

Like write_term with the options [quoted(true), numbervars(true)].

writeq(Term)

Same, using current output stream.

The import of this is that it lets you write your own user interface for the Prolog system (or any Prolog{

like query processor). You can accept a query, store a list that gives the names of its variables, and then

eventually print out the names alongside the values.

There are also two less elaborate options. The option singletons(List) gives you a list, in the same

format, of just the variables that occurred only once in the term | useful if you're reading Prolog clauses

and want to detect misspelled variable names. And variables(List) gives you a list of just the variables,

without their names (such as [_0001,_0002]).

A.7.7 Writing terms

Table A.7 lists the predicates for writing terms. The following options are available:

� quoted(true) puts quotes around all atoms and functors that would require them in order to be read

by read/1.

� ignore_ops(true) writes all functors in functor notation, not as operators (e.g., +(2,2) in place of

2+2).

� numbervars(true) looks for terms of the form '$VAR'(1), '$VAR'(2), '$VAR'(3), etc., and outputs

them as A, B, etc.

The signi�cance of this is that '$VAR'{terms are often used to replace variables when there is a need

to instantiate all the variables in a term. By printing the term out with this option, its variables can

be made to look like variables again.

A.7.8 Other input{output predicates

Table A.8 lists some additional input{output predicates.
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Table A.8: Miscellaneous input{output predicates.

current input(Stream)

Uni�es Stream with the handle of the current input stream.

current output(Stream)

Uni�es Stream with the handle of the current output stream.

set input(Stream)

Redirects current input to Stream.

set output(Stream)

Redirects current output to Stream.

flush output(Stream)

Causes all output that is bu�ered for Stream to actually be written.

flush output

Same, but uses current output stream.

at end of stream(Stream)

True if the stream is at or past end of �le (i.e., the last character or term has been read).

(Presumably, a read or read_term consumes all the whitespace following the term that it has read;

but the standard does not make this clear.)

set stream position(Stream,Pos)

Repositions a stream (use stream_property to obtain a term that represents a position).

nl(Stream)

Starts a new line on Stream (which should be text).

nl

Same, using current output stream.

op(Priority,Specifier,Term)

Alters the set of operators during execution. See sections A.1.7, A.2.2.

current op(Priority,Specifier,Term)

Determines the operator de�nitions that are currently in e�ect. Any of the arguments, or none, can

be instantiated. Gives multiple solutions upon backtracking as appropriate.

char conversion(Char1,Char2)

Alters the set of character conversions during execution. See sections A.2.2, A.5.

current char conversion(Char1,Char2)

True if char_conversion(Char1,Char2) is in e�ect (see sections A.2.2, A.5). Either argument, or

none, may be instantiated. Gives multiple solutions upon backtracking.
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A.8 Other Built{In Predicates

This section briey describes all the other built{in predicates described in the draft ISO standard.

A.8.1 Uni�cation

Arg1 = Arg2

Succeeds by unifying Arg1 with Arg2 in the normal manner (i.e., the same way as when arguments are

matched in procedure calls). Results are unde�ned if you try to unify a term with another term that

contains it (e.g., X = f(X), or f(X,g(X)) = f(Y,Y)). (Commonly, such a situation produces cyclic

pointers that cause endless loops when another procedure later tries to follow them.)

unify with occurs check(Arg1,Arg2)

Succeeds by unifying Arg1 with Arg2, but explicitly checks whether this will attempt to unify any term

with a term that contains it, and if so, fails:

?- unify_with_occurs_check(X,f(X)).

no

This version of uni�cation is often assumed in work on the theory of logic programming.

Arg1 \= Arg2

Succeeds if the two arguments cannot be uni�ed (using the normal uni�cation process).

A.8.2 Comparison

(See also the arithmetic comparision predicates < =< > >= =:= in section A.6.)

Arg1 == Arg2

Succeeds if Arg1 and Arg2 are the same term. Does not unify them and does not attempt to instantiate

variables in them.

Arg1 \== Arg2

Succeeds if Arg1 and Arg2 are not the same term. Does not unify them and does not attempt to

instantiate variables in them.

Arg1 @< Arg2

Succeeds if Arg1 precedes Arg2 in alphabetical order. All variables precede all oating{point numbers,

which precede all integers, which precede all atoms, which precede all structures. Within terms of the

same type, the alphabetical order is the collating sequence used by the computer, and shorter terms

precede longer ones.

Arg1 @=< Arg2

Succeeds if Arg1 @< Arg2 or Arg1 == Arg2. Does not perform uni�cation or instantiate variables.

Arg1 @> Arg2

Like @< with the order of arguments reversed.

Arg1 @>= Arg2

Like @=< with the order of arguments reversed.

A.8.3 Type tests

var(Arg)

Succeeds if Arg is uninstantiated.

nonvar(Arg)

Succeeds if Arg is at least partly instantiated.

atomic(Arg)

Succeeds if Arg is an atom or a number.
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compound(Arg)

Succeeds if Arg is a compound term (a structure, including lists but not []).

atom(Arg)

Succeeds if Arg is an atom.

number(Arg)

Succeeds if Arg is a number (integer or oating{point).

integer(Arg)

Succeeds if Arg is an integer. Note that this tests its data type, not its value. Thus integer(3)

succeeds but integer(3.0) fails.

real(Arg)

Succeeds if Arg is a oating{point number. Thus real(3.3) succeeds but real(3) fails.

A.8.4 Creating and decomposing terms

functor(Term,F,A)

Succeeds if Term is a compound term, F is its functor, and A (an integer) is its arity; or if Term is an

atom or number equal to F and A is zero. (Either Term, or both F and A, must be instantiated.) Some

examples:

?- functor(f(a,b),F,A).

F = f

A = 2

?- functor(What,f,2).

What = f(_0001,_0002)

?- functor(What,f,0).

What = f

?- functor(What,3.1416,0).

What = 3.1416

arg(N,Term,Arg)

Succeeds if Arg is the Nth argument of Term (counting from 1):

?- arg(1,f(a,b,c),What).

What = a

Both N and Term must be instantiated.

Term =.. List

Succeeds if List is a list consisting of the functor and all arguments of Term, in order. Term or List,

or both, must be at least partly instantiated.

?- f(a,b) =.. What.

What = [f,a,b]

?- What =.. [f,a,b]

What = f(a,b)

copy term(Term1,Term2)

Makes a copy of Term1 replacing all occurrences of each variable with a fresh variable (like changing

f(A,B,A) to f(W,Z,W)). Then uni�es that copy with Term2.

?- copy_term(f(A,B,A),What).

A = _0001

B = _0002

What = f(_0003,_0004,_0003)
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A.8.5 Manipulating the knowledge base

Note that only dynamic predicates can be manipulated. Static predicates are compiled into a form

that is inaccessible to some or all of the built{in predicates described here. Nonetheless, some implementa-

tions may treat static predicates as dynamic.

clause(Head,Body)

Succeeds if Head matches the head of a dynamic predicate, and Body matches its body. The body of

a fact is considered to be true. Head must be at least partly instantiated. Thus, given

green(X) :- moldy(X).

green(kermit).

we get:

?- clause(green(What),Body).

What = _0001, Body = moldy(_0001) ;

What = kermit, Body = true

current predicate(Functor/Arity)

Succeeds if Functor/Arity gives the functor and arity of a currently de�ned non{built{in predicate,

whether static or dynamic:

?- current_predicate(What).

What = green/1

Gives multiple solutions upon backtracking.

Note that current_predicate(Functor/Arity) succeeds even if all the clauses of the predicate

have been retracted (or if the predicate was declared dynamic but no clauses were ever asserted), but

not if the predicate has been abolished.

asserta(Clause)

Adds Clause at the beginning of the clauses for its predicate. If there are no clauses for that predicate,

the predicate is created and declared to be dynamic. If the predicate already has some clauses and is

static, an error condition is raised.

assertz(Clause)

Like asserta, but adds the clause at the end of the other clauses for its predicate.

Note: assert (without a or z) is not included in the standard.

retract(Clause)

Removes from the knowledge base a dynamic clause that matches Clause (which must be at least

partly instantiated). Gives multiple solutions upon backtracking.

Note that the fact green(kermit) could be retracted by any of the following queries:

?- retract(green(kermit)).

?- retract((green(kermit) :- true)).

?- retract((green(_) :- _)).

Note: retractall is not included in the standard.

abolish(Functor/Arity)

Completely wipes out the dynamic predicate designated by Functor/Arity, as if it had never existed.

Its dynamic declaration is forgotten, too, and current_predicate no longer recognizes it.

This is a more powerful move than simply retracting all the clauses, which would leave the dynamic

declaration in place and leave current_predicate still aware of the predicate.
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A.8.6 Finding all solutions to a query

findall(Term,Goal,List)

Finds each solution to Goal; instantiates variables to Term to the values that they have in that solution;

and adds that instantiation of Term to List. Thus, given

green(kermit).

green(crabgrass).

we get the following results:

?- findall(X,green(X),L).

L = [kermit,crabgrass]

?- findall(f(X),green(X),L).

L = [f(kermit),f(crabgrass)]

This is the simplest way to get a list of the solutions to a query. The solutions found by findall are

given in the order in which the normal searching{and{backtracking process �nds them.

bagof(Term,Goal,List)

Like findall(Term,Goal,List) except for its treatment of the free variables of Goal (those that

do not occur in Term).

Whereas findall would try all possible values of all variables, bagof will pick the �rst set of values

for the free variables that succeeds, and use only that set of values when �nding the solutions in List.

Then, if you ask for an alternative solution to bagof, you'll get the results of trying another set of

values for the free variables. An example:

parent(michael,cathy).

parent(melody,cathy).

parent(greg,stephanie).

parent(crystal,stephanie).

?- findall(Who,parent(Who,Child),L).

L = [michael,melody,greg,crystal]

?- bagof(Who,parent(Who,Child),L). % Child is free variable

L = [michael,melody] ; % with Child = cathy

L = [greg,crystal] % with Child = stephanie

If in place of Goal you write Term^Goal, any variables that occur in Term will not be considered free

variables. Thus:

?- bagof(Who,Child^parent(Who,Child),L).

L = [michael,melody,greg,crystal]

The order of solutions obtained by bagof is up to the implementor.

setof(Term,Goal,List)

Like bagof(Term,Goal,List), but the elements of List are sorted into alphabetical order (see @<

under \Comparisons" above) and duplicates are removed.

A.8.7 Terminating execution

halt

Exits from the Prolog system (or from a compiled program).

halt(N)

Exits from the Prolog system (or from a compiled program), passing the integer N to the operating

system as a return code. (The signi�cance of the return code depends on the operating system. For

example, in MS{DOS and UNIX, return code 0 is the usual way of indicating normal termination.)
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:- module(my_list_stuff).

:- export([last/2,reverse/2]).

:- begin_module(my_list_stuff).

last([E],E).

last([_|E],Last) :- last(E,Last).

reverse(List1,List2) :- reverse_aux(List1,[],List2).

reverse_aux([H|T],Stack,Result) :- reverse_aux(T,[H|Stack],Result).

reverse_aux([],Result,Result).

:- end_module.

Figure A.1: Example of a module.

A.9 Modules

A.9.1 Preventing name conicts

Ordinarily, in a Prolog program, there cannot be two di�erent predicates with the same name and arity.

This can pose a problem when two programmers, writing di�erent parts of the same program, inadvertently

choose the same name and arity for di�erent predicates.

The solution is to divide large programs into modules, or sections, each of which has its own namespace.

Names de�ned in one module are not recognized in other modules unless explicitly made visible there. Thus,

like{named predicates in di�erent modules do not conict.

A.9.2 Example of a module

Some Prolog vendors have had module systems for several years, but none is quite like the proposed ISO

system.

In the proposed system, there are, by default, two modules, system (for built{in predicates) and user

(for user{de�ned predicates). The predicates in system are visible in user and all other modules.

The user can create more modules ad libitum; Figure A.1 shows an example. The module consists of two

parts: an interface, specifying what is to be made callable from other modules, and a body, giving the

actual predicate de�nitions.

This module is named my_list_stuff and, crucially, last/2 and reverse/2 are callable from other

modules but reverse_aux/3 is not. Thus, reverse_aux will not conict with anything that happens to

have the same name elsewhere.

To use a predicate in one module which is de�ned in another, the de�ning module must export it and

the calling module must import it. Thus, any module that wants to call reverse (as de�ned here) must

import my_list_stuff.

Note that importing a module is not the same thing as loading it into memory (using compile, consult,

or the like). In order to have access to a module, you must do both.

A.9.3 Module syntax

Basically, exporting is done in the module interface, while de�ning and importing are done in the module

body. The syntax is:

:- module( name ).
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Various export, reexport, and meta directives

:- end_module. (optional if begin_module is the next directive)

:- begin_module( name ).

Predicate de�nitions and import, meta, op, and dynamic declarations

:- end_module.

Here op and dynamic work the same way as if you aren't using the module system, except that they have

scope only over one module. The other declarations work as follows:

:- export([Pred/Arity,Pred/Arity...]).

The listed predicates (de�ned in this module) are made callable from other modules that import them.

(Used in interface.)

:- import(Module).

All the predicates that exported by Module are to be imported into (and hence usable in) the current

module. (Used in module body.)

:- import(Module,[Pred/Arity,Pred/Arity...]).

Same, but only the speci�ed predicates are imported.

:- reexport(Module).

Combination of import and export. All the predicates that are exported by Module are imported into

the current module and are also exported by it. (Used in interface.)

:- reexport(Module,[Pred/Arity,Pred/Arity...]).

Same, but only the speci�ed predicates are reexported.

:- meta([Pred/Arity,Pred/Arity...]).

The speci�ed predicates are de�ned to be metapredicates (see next section). This declaration can be

used in either the interface or the body. If it is used in the interface, the predicates are also exported.

A.9.4 Metapredicates

A metapredicate is a predicate that needs to know what module it is called from. Built{in metapredicates

include abolish, asserta, assertz, clause, current predicate, current visible, and retract, all of

which manipulate the predicates in the module that they are called from (not the module they are de�ned

in); and bagof, setof, findall, catch, call, and once, all of which take goals as arguments and need to

be able to execute them in the module they are called from.

Users can also de�ne their own metapredicates by declaring them meta (see previous section). Within

a metapredicate, the goal calling_context(Module) will retrieve the name of the module from which the

predicate was called.

A.9.5 Explicit module quali�ers

If, instead of Goal, you write Module:Goal, you gain the ability to call any predicate of Module, whether or

not that module has exported it or the current module has imported it. In the example in Figure A.1, the

query

?- my_list_stuff:reverse_aux([a,b,c],X,Y).

would work from any module, even though reverse_aux is not exported by the module that de�nes it.

By writing Goal@Module, you can specify what module a metapredicate should think it was called from.

For example,

?- current_predicate(What) @ my_module.

would retrieve the predicates that are de�ned in my_module rather than in the current module. (Note that

current_predicate is de�ned in system; you would be making it think it was executing in my_module.)



A.9. MODULES 23

A.9.6 Additional built{in predicates

calling context(Module)

Instantiates its argument to the module from which the current clause was called. For use in metapred-

icates.

current module(Module)

Succeeds if its argument is the name of any currently existing module. Arguments need not be instan-

tiated.

current visible(Pred/Arity,Module)

Succeeds if Pred/Arity describes a predicate that is de�ned in Module and is visible (callable) from

the module in which this query is taking place. Arguments need not be instantiated.

A.9.7 A word of caution

The module system is much farther from �nal form than the rest of the proposed ISO standard. Substantial

changes are still quite possible.


